Executive Summary


This report is providing an analysis on a self-encrypted hard drive device manufactured by syba. The intent of the investigation is to apply as many digital forensics principals as possible. Methods of analysis are examination of the documentation provided by the manufacturer, the use of a logical analyzer and software followed by a file comparison procedure.

Detailed findings can be found further in the body of the text. Findings confirmed the already known facts that AES is only susceptible by brute force and side channel attacks. During the investigative process a theory of commonality, explained in detail further in the text, it is either highly unlikely or impossible to find a common property with the passkey designated by the user and the key used by the control chip in the encryption device.

This report concludes it’s necessary to further investigate the properties of a self-encrypting hard drive enclosure—possibly with more resources. 

Recommendations are as follows:

· Advance the project up to a team with more resources and experience.

· Draft and execute a policy disallowing the use of SEDs.

· As it currently understood with this particular device, brute force the SED in order to gain access

Limitations of the project came inherently with it as this was a part-time enterprise. Each member had to compartmentalize their time in-order to focus on this project at sporadic time. Secondly, another limitation was the team’s lack of experience with an SED, having to essentially, make it up as it went along.

Note: Below is an excerpt from the full report. What is to follow only documents the procedure looking for commonality in the key generation of the Self Encrypting Device’s control chip. 

(This section was written by Alex Andrews , a senior in the Digital Forensics class – CIT 420 at Indiana University Purdue University at Indianapolis)
There have been assumptions made that with the controller chip of the self-encrypting device, the brains of the encryption process, only uses a static key – unchanging key. Specifically it was brought up in conversation at the most recent Bsides Indy (http://bsidesindy2017.busyconf.com/schedule) , a local Indiana hacker convention that such a mechanism was in place. Why is this significant? Any sort of commonality that can be found in a device or mechanism of encryption is just one step closer to find an unknown secret. 

So, with that in mind, the team used Kali Linux, since it includes tools readily available to handle this type of job. We started by creating a file that we knew the contents of. This is the part of deduction, one must start with something that is known. Remember in math class solving for an unknown variable? In that equation, there was always something known. The team created a file where we both knew the plaintext and cipher text to analyze any differences.

The file created was full of the letter “A”. This way it would be recognizable in either clear text or another recognizable format. Shown below in Figure 13.

[image: image1.png]root@ekali

File Edit View Search Terminal Help

U BL.16 part
0 214.96 0 part
0 81.16 0 part
0 81.16 0 part
1 59.86 0 disk
1
1
[
1

2.86 © part /lib/live/mount/mediun
105M 0 part /media/root/Kali Live

74.56 0 disk

1024M @ rom
6 2.56 1 loop /lib/live/mount/rootfs/filesystem.squashfs
~# python -c 'print "A" * 100080' > /dev/sdc

~# head /dev/sdc/ |xxd
head: cannot open '/dev/sdc/' for reading: Not a directory
root@kaliz~# head /dev/sdc |xxd
00000000: 4141 4141 4141 4141 4141 4141 4141 4141
00000010 4141 4141 4141 4141 4141 4141 4141 4141
00000020 4141 4141 4141 4141 4141 4141 4141 4141
00000030: 4141 4141 4141 4141 4141 4141 4141 4141
00000040: 4141 4141 4141 4141 4141 4141 4141 4141
00000050 4141 4141 4141 4141 4141 4141 4141 4141
00000060: 4141 4141 4141 4141 4141 4141 4141 4141
00000070 4141 4141 4141 4141 4141 4141 4141 4141
00000080: 4141 4141 4141 4141 4141 4141 4141 4141
00000090 4141 4141 4141 4141 4141 4141 4141 4141





Figure 13: Plaintext A = cipher text 41
There’s actually quite a lot to see in this screenshot. The ‘41’ represents ‘A’ in hexadecimal.  “sdc” is the hard drive that we are examining. The command “head /dev/sdc |xxd” is a means of doing an examination of what’s on ‘sdc’. The command further up, “python -c ‘print “A” * 100000’ > /dev/sdc” is the command that creates a file with 100k of “A”s that is sent to the hard drive.(sdc). Shown in Figure 14 below.

[image: image2.png]root@ekali

File Edit View Search Terminal Help

> 000190b0: fc30 f0dO bcfe bdba 7149 2f74 292 allb
> 000190c0: 76b4 7a55 ceba

TYPE MOUNTPOINT
0 disk
part
part
part
part
disk
part /lib/live/mount/medium
part /media/root/Kali Live

0
0
0
0
1
1
1
0 disk
1

0

roooocoooo®

rom
. Toop /lib/live/mount/rootfs/filesystem.squashfs
~# head /dev/sdc |xxd
00000000: aa35 3907 al22 afde 5434 0d9d c785 3143
00000010: 90C3 4al7 ablc ldac 8064 8fel ab5a 1752
00000020: 872 236a 34le 6cc9 992d leae 9969 2377
00000030: d675 8011 1db6 8842 ef18 1a23 270 c731
00000040: alb3 08d5 b379 99c6 80fd 9fc7 8767 8fde
00000050: 824 33fb afcc a343 0dd4 718e 315c 20bd
00000060: fh26 701c 6590 7bbd 872a e8a5 baSa 6ec2
00000070: 5095 7ac5 1d8e 4744 adf7 7164 18be ebad





Figure 14: using head /dev/sdc |xxd command in Kali Linux
Now with the same file outside of the encryption enclosure, the same command is used to examine the file. (see figure 15) It looks weird doesn’t it? Doesn’t make sense. That’s because it’s encrypted, making it illegible. 

We then create a file “password_2” (back with the enclosure on) with the same command as before. And then examine it outside the encryption enclosure. Just a quick glance, you can tell it’s different than the first file. 

[image: image3.png]root@kali: ~

File Edit View Search Terminal Help
root@kall:~# clear ~

root@kali:~# head /dev/sdc |xxd

00000000: 14e9 90le 191 4ab65 0326
00000010: 048 3a3f fdd4 672b 743f
00000020: 2d25 c54d 6le5 25al 42be
00000030: 8b31 d791 fe3d d9a5 9720
00000040: 669d 77c7 5276 d668 Ocl4
00000050: dabb 1d37 cd53 c252 d620
00000060: 2637 40a6 b57f 8795 ac49
00000070: 5a35 985d 82a2 2c48 3ed3
00000080: 62d8 e063 7dc7 Obde 4f59
00000090: 089f ©5af cc4l 839c del?
000000a0: 3247 466a d162 05a6 b64c
000000b0: 389e 8a36 dOad 2bdd 8214
000000c0: b8fe c88a 710b daf3 1675
000000d0: 4f20 7685 bl7d e2a2 e542
000000e0: 1d3f d406 92fd ef8e b994
000000f0: 1c8f lbfa 5a5e 42f7 69f1
00000100: a4d8 5096 abad 2d48 eeb8
00000110: 7483 609f 1f4d d9ed bbb
00000120: abc4 e74a dfd2 ab®9 ce36
00000130: 9eff 4804 1d8f fe79 67db
00000140: 7826 29c8 908a 9a33 e513
00000150: 3b8b 9db0 8d4b 416c 13dc
00000160: df74 1c79 bl50 2599 86bf
00000170: 5421 9950 d29f 278e 47bf
00000180: 5a9%c 5cb8 d394 ce74 5e72
00000190: 1f12 113b b796 ©b%b 915a
000001a0: 34f2 08ab 3e29 d514 7836
000001b0: 1975 2029 4243 1109 9826
000001cO: 275 c4e5 Bed7 5471 5165
000001d0: 2d85 69be 23cc bab4 Sca2
000001e0: 2d68 201b feed 980b 4054
000001f0: 761b 3662 d246 ffla b7a9
00000200: 058c 6cab df93 e399 efd5
00000210: €210 abl® 09f2 a3ea 6dle
00000220: e85b 7b87 7220 07cf 2ec2
00000230: 79f6 3c49 74ca 31lca 13d8
00000240: 023 2446 838b f3lc 6844
00000250: ea3l 4lea 2005 336 9103
00000260: 8b57 Odec 864d 306e 8ldc
00000270: d4a5 07b6 6edd 6f0e a3d9
00000280: 7e07 decO 4276 53d7 962
290 8485





Figure 15: encrypted file on drive outside of SED enclosure
But there is a means to make sure the two files are different.

[image: image4.png]root@ekali

File Edit View Search Terminal Help

2.txt Documents hex.me password_1 Pictures

root@kali:~# diff password 1 password 2
1,193cl,166 “= =

< 00000000: 14e9 90le 19f1 4a65 0326 4c56 e7fl 586d
00000010: 048 3a3f fdd4 672b 743f 7abe 65ae 8fda
00000020: 2d25 c54d 6le5 25al 42be a573 87c8 a3bb
00000030: 8b31 d791 fe3d d9a5 9720 Oc7f eddb 454c
00000040: 669d 77c7 5276 d668 Ocl4 6e6l adlf b752
00000050: dabb 1d37 cd53 c252 d620 8edl 75c4 8171
00000060: 2637 40a6 b57f 8795 ac49 0402 8aed Oc70
00000070: 5a35 985d 82a2 2c48 3e43 ef37 cOed 0alb
00000080: 62d8 e063 7dc7 Obde 4f59 0438 c95b d120
00000090: 089f ©5af cc4l 839c del7 283a e96d 73ed
000000a0: 3247 466a d162 05a6 b64c bdec bflb Ocf9
000000b0: 389e 8a36 dbad 2bdd 8214 fecc e547 7f6b
000000cO: b8fe c88a 710b daf3 1675 0620 4901 62e7
000000d0: 4f20 7685 bl7d e2a2 e542 34ba blll afdd
000000e0: 1d3f d406 92fd ef8e b994 671a 9aa2 6d68
000000f0: 1c8f 1bfa 5a5e 42f7 69f1 7féb 1759 1f51
00000100: a4d8 5096 abad 2d48 eeB8 cfac d42b f314
00000110: 7483 609f 1f4d d9ed bbe9 c420 56d3 ced?
00000120: abc4 e74a dfd2 ab09 ce36 ff64 dbf6 2ebb
00000130: 9eff 4804 1d8f fe79 67db 1lbe2 c85d 020b
PPPPP140: 7826 29c8 908a 9a33 e513 abch 4925 db86

Videos

Tenplates

.Je.&LV. .Xn
.git7z.e

AAAAAAAAAAAAAAAAAAAA




Figure 16: Using Linux diff command
If you’ll look at the yellow arrow, (see Figure 16) this command will make a comparison of both files. This shows the use of the Linux diff command. This command shows the difference between two files. The text below marked with a red arrow: “1,193c1,166” tells us there is indeed a big difference between the two files. What it means is that “1,193” lines 1 through 193 of the first file(password_1) are different that lines 1 through 166 of the second file. The comma represents a “through”. So ultimately, this proves the original hypothesis is wrong. There is not a static key. If there were, the files would be the same, since their contents are the same as well.

Now, with all that said, what if the random key that was being generated were dependent upon the passkey given?

[image: image5.png]research-Latitude-E622

0: /home/research

PASSWORD 1
0000000: 335c 4163 c7a9 00c3 151c e2ce 2480 b737
0000010: 64be e187 c24c becl 55a5 92cd 9865 7b64
0000020: 7194 ed99 29bf Ocde 18e8 6b0a Ofcl 41b2
0000030: 6d49 edda 9994 ca36 d27c 27af edb9 a839
0000040: 8ffc dO7c e6a9 4067 147e 4a2f 873e cOdf
0000050: eblc 45ee 1le48 8fc2 1c28 5587 7f27 477d
0000060: de93 ed3d 9a%e 46ba 497a ffbl 5a2d 1faa
0000070: 8453 12cd 69aa 6093 a567 893b 30fa 4977
0000080: a292 1695 e7ec ae9%e 8lbc ad66 bde3 0455
0000090: f85e f794 15ed 177f ddc9 a262 8079 bela

=> PASSWORD 1 AGAIN <:
0000000: 27f0 9257 4962 8755 8e2l d495 eedf 3bcO
0000010: 7395 a508 cla7 b5f5 4887 c384 8cfd ec26
0000020: BGabc 1330 lccd4 3791 8838 6be9d 3b17 4b68
0000030: 0laf 4f98 a3f7 dld7 8d50 c98c 4cOa 2e7f
0000040: abl9 6f37 061b 137c d2cf cb5f f2a5 ffcc
0000050: 7db3 ed4b2 Seff 6lle f857 beaf f3af 46da
0000060: c4bf a3fc 7ad3 df9a ab71 6cl2 d862 4f7b
0000070: 2890 9951 43cO a094 c25a 044f 8leb 6800
0000080: 70dd 62d9 ed4ab la56 8a06 4dcb ca2e 5088
0000090: 664d ac9c 85d6 637f 5939 74ba 8lab ebda

0000000: 9baa dd21 23d@ 5215 abd7 bac4 39b5 5b2d
0000010: 53e8 cb45 52da 3b97 9f29 7370 e75b 48e9
0000020: 09ab b154 6d9%e 78f2 bceb 4290 Obfe e7f0
0000030: f9d1l b944 cBe5 7fed c5b9 859d 7761 6ald
0000040: e808 913c clf5 fOf8 eld5 2351 461d 057f
0000050: e513 20ae 9763 674e 7d8a 6ff2 ccd2 ab2d
0000060: 4779 5e7c 9dac al7e 5a8d d562 c426 7da3
0000070: 59db e462 d9de de63 6e98 d124 869f c3f5
0000080: c9f@ f8d4 28d2 75fc 6b99 dcl7 9f3d f3ed
0000090: 763e 811f 1061 df34 541a 4751 b756 9b85
root@research-Latitude-E6220:/home/research# [




Figure 17: Different generations of a random key
If you’ll look above,(see Figure 17) courtesy of Rush Vyas, research assistant at Indiana University Purdue University at Indianapolis, you’ll see a screenshot of three different iterations of the process. First one was a passkey of “1”, the second with “2” and the third Rush went back to “1” to see if they encryption were the same or different. It appears to be different. That means the key within the control chip is generated each and every time randomly no matter the passkey given. Always looking for the commonality!

